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Zn-paratacamite is a rare spin-1/2 antiferromagnetic insulator with an ideal kagome lattice structure in part
of its phase diagram. As a function of Zn doping, this material undergoes a structural distortion which relieves
the frustration and introduces magnetic order in the ground state, though the precise nature of the order is not
clear at this point. In this paper, we present strong evidence for Néel ordering in the strongly distorted phase
of Zn-paratacamite through the application of quantum Monte Carlo techniques. These numerical results
support a recent Schwinger-boson mean-field theory of Zn-paratacamite. For weak distortion, close to the ideal
kagome limit, our results indicate a regime with no Néel order but with broken glide-plane symmetry. For this
model the glide-plane symmetry is broken by any valence-bond crystal. Hence, our results lend support to
recent proposals [P. Nikolic and T. Senthil, Phys. Rev. B 68, 214415 (2003); R. R. P. Singh and D. A. Huse,
Phys. Rev. B 76, 180407(R) (2007)] of a valence-bond crystal ground state for the undistorted lattice. The
phase transition between the two phases could be in the deconfined universality class if it is not a first-order

transition.
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I. INTRODUCTION

Recently, a number of spin-1/2 frustrated magnetic insu-
lators have been discovered without any sign of magnetic
order or structural distortions down to the lowest tempera-
tures studied."”* Among these materials, the Zn-doped-
paratacamite family stands out for having a (nearly) control-
lable degree of distortion allowing the amount of geometric
frustration to be tuned directly by an experimentalist. As
such, they are a promising place to look for new phases of
matter while at the same time probe how these new phases
may be related to more well understood phases.

The control of the distortion is largely through the chemi-
cal pressure induced by the substitution of Zn atoms for Cu
atoms on the (gray) triangular lattice planes that live in be-
tween kagome planes, as shown in Fig. 1. While Zn and Cu
atoms are similar in size, Zn atoms fit into these sites without
disrupting their environment, unlike Cu atoms which distort
the kagome planes given a high enough density. In particular,
for less than 0.3 filling of Zn atoms (greater than 0.7 filling
of Cu atoms) the lattice distorts in a remarkable bipartite
structure and magnetic order is found in the ground state.>>0
The spins are thus relatively unfrustrated at these low doping
concentrations. For Zn doping larger than this threshold, the
lattice has the undistorted ideal kagome form and for x
=0.4 no magnetic ordering has been reported down to 50
mK despite an estimated spin exchange J~200 K.3

A natural theoretical model of this material is the spin-1/2
Heisenberg model with two exchange parameters on a dis-
torted kagome lattice>’ (see Fig. 1):
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Here Ap tunes the distortion on the next-nearest-neighbor
bonds (nnn) with N\,=1 the undistorted ideal kagome limit
(where nnn bonds are equivalent to nn bonds). This is an
idealized model for several reasons: it assumes the coupling
between planes and further neighbors is weak (which seems
reasonable>®), it neglects Dzyaloshinsky-Moria interactions
possibly important for the low-temperature susceptibility,>”

FIG. 1. (Color online) The layered Zn-paratacamite magnetic
lattice structure. Cu atoms live on the (sometimes distorted) kagome
layer (bronze atoms) while Zn or Cu atoms occupy sites on a trian-
gular lattice above the kagome plane (gray atoms). Solid (purple)
bonds represent nearest neighbors [(ij) in Eq. (1)] resulting in a
“brick-wall” lattice, while transparent (bronze) bonds represent the
next-nearest neighbors [((ij)) in Eq. (1)].
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and it replaces the effect of doping in the triangle lattice
planes with the uniform distortion parameter Ap. While it is
possible that any of these approximations may be important
for some properties of Zn-paratacamite, here we will focus
on those properties which clearly belong to the phenomenol-
ogy of this simplified model.

In this paper, we study the ground-state properties of the
Hamiltonian in Eq. (1) as a function of A\, extrapolating
between a bipartite “brick-wall” lattice at Ap=0 and the iso-
tropic kagome lattice at A\p=1. At A\p=0, we show using
valence-bond quantum Monte Carlo!®!" that the ground state
is magnetically ordered with the expected Néel pattern for
this bipartite lattice and with a magnetization of m'
=0.240(1) that is 22% smaller than the square lattice value.'?
For 0=Ap=1 we study this model using exact diagonaliza-
tion on finite-size clusters of size 12, 24, and 36 sites. By
introducing symmetry breaking fields, we study the suscep-
tibility of the ground state toward dimerization. Remarkably,
we find that for A, =0.8, a phase transition occurs toward a
rotationally invariant state which prefers to have a broken
glide-plane (GP) symmetry, consistent with the presence of a
valence-bond crystal (VBC) order including the pin-wheel
VBC pattern proposed by Ref. 7. This symmetry breaking
survives up to the Ap=1 ideal kagome limit. While it is
difficult to draw definitive conclusions on such small sys-
tems, a broken glide-plane symmetry supports Refs. 13-15
proposal that the spin-1/2 kagome antiferromagnet has a
VBC ground state. At the same time a broken glide-plane
symmetry is not consistent with a spin-liquid phase, fre-
quently supported by other exact diagonalization studies.'® In
addition, while we cannot rule out a first-order transition
from a VBC phase to the Néel phase in our model, it is also
possible this quantum phase transition is in the deconfined
universality class.!”

II. RESULTS AT A\p=0

We first discuss our results obtained at A\,=0 where we
have been able to study large system. As can be seen from
Fig. 1, where the transparent (bronze) bonds are proportional
to \p, the lattice formed by the remaining solid (purple)
bonds is a bipartite “brick-wall” lattice with a coordination
number of 3 on two thirds of the sites and of 2 on the re-
maining sites. Due to the bipartite nature of the A=0 lattice
there is no frustration. A classical antiferromagnetic Néel
state can be unambiguously assigned to the lattice. It is then
possible to perform very efficient quantum Monte Carlo
simulations using the recently proposed'®!! valence-bond
quantum Monte Carlo (VBQMC). For \;,=0 there is no sign
problem and extremely precise results can be obtained.
VBQMC is a projection method where the 7=0 ground state
is projected out through the repeated application of the
Hamiltonian, H, on a trial state, |¥;). In essence, |V)
=(—H)"|¥;). In the limit where n— % this becomes exact. In
a practical implementation »n is kept fixed at a high number
and the different terms in |W) are sampled using Monte
Carlo methods. For convergence, the relevant lattice size-
independent expansion order is n/N,, where N, is the num-
ber of terms in the Hamiltonian. N, is equal to (4/3)N for the
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FIG. 2. (Color online) The singlet-triplet gap, A, versus inverse
system size 1/N. The different curves correspond to different ex-
pansion orders n, with the ratio n/N,, kept fixed. Here, N,, is the
number of bond operators in the Hamiltonian, N,=(4/3)N. Results
are shown for n/N,=5 (B), n/N,=7 (<), and n/N,=10 (@®). Error
bars are shown but are typically smaller than the symbols.

brick-wall lattice, with N as the number of sites in the lattice.
Typically we use n/N,=3-10 and an extrapolation to n/N,
= can then be performed.

We have performed systematic VBQMC studies of A
=0 brick-wall lattices with number of sites N=12 X m? for
m=1,...,10 using periodic boundary conditions. Typically,
10°~107 Monte Carlo steps were performed for a range of
values of n/N,=3,5,7,10. All error bars were calculated
using standard binning techniques.

A very natural question to ask is if the Ap=0 brick-wall
lattice has a nonzero singlet to triplet gap, A. A particularly
appealing feature of VBQMC is that it allows for a direct
estimator'®!! of this gap independent of the estimators for
the ground-state singlet and excited triplet energies. Due to a
cancellation of errors it is then possible to calculate this gap
with a precision significantly exceeding that which could
have been obtained by separately calculating the ground and
excited state energies. Our results for A at Ap,=0 are shown
in Fig. 2. Data are shown for three different values of
n/N,=5 (W), n/N,=7 ({), n/N,=10 (@) versus inverse
system size 1/N. At N=1200, n/N,=10 the gap is A
=0.0059(1)J and minimal dependence on the expansion or-
der n/Ny is seen. From the results shown in Fig. 2 we con-
clude that the gap vanishes in the thermodynamic limit.

For the two-dimensional square lattice antiferromagnetic
Heisenberg model it is well known'® that the antiferromag-
netic order exists at 7=0 with m"=0.30743(1) (Ref. 12). The
square lattice has a coordination number of 4 whereas the
brick-wall lattice has a mixed coordination of 2 and 3. We
therefore expect m' to be smaller or possibly zero for the
brick-wall lattice. As usual, we define

S(q,) = $<(E §Z<x,y>)2>, 2)
X,y

where (. is the wave vector of the staggered magnetization
and S%(x,y) is given by
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FIG. 3. (Color online) The structure factor, S(q,), versus inverse
linear system size 1/VN. Results are shown for n/N,=10. Error
bars are shown but are typically smaller than the symbols. Results
for n/N,=17 are indistinguishable from the n/N,=10 results shown
and have been left out for clarity.

~ 1
$x.y) = S €0 (xy), (3)

with €, , equal to +1 or —1 depending on what sublattice the
point (x,y) belongs to. Hence we have!®

m’ = (5% = lim \35(q,). (4)
L—®

Our results for S(q,) for n/N,=10 are shown in Fig. 3. It is
expected!® that the leading finite-size corrections are of the
form 1/\N and a fit to this form yields S(q,)=0.0192(5) and
consequently

m'=0.24003). ()

As expected, this value is reduced with respect to the square
lattice result, but is clearly nonzero, indicating a well-
established antiferromagnetic order at A,=0.

III. RESULTS AT Ap#0

We now turn to a discussion of our results for 0 <<\,
= 1. In this case it is no longer possible to perform VBQMC
calculations due to a sign problem that appears rather severe
as soon as Ap # 0 and reliable numerical results are therefore
much harder to obtain. In light of the strong sign problem we
have performed exact diagonalization studies for 0 <A =1
on finite-size systems employing periodic boundary condi-
tions. Our goal is to study generalized bond susceptibilities
with respect to symmetry breaking fields. We focus on C,
and GP symmetry breaking fields shown in Fig. 4 where the
dimers indicate bonds where the strength is modified J'
=J = 6. The C, symmetry corresponds to a rotation by 7 and
clearly the field shown in Fig. 4(a) breaks this symmetry. The
GP symmetry’ is somewhat more exotic and corresponds to a
translation along the rails where the dimers are sitting fol-
lowed by a reflection around one of these rails. We note that
the GP field does not break the C, symmetry and likewise the
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(b)

FIG. 4. (Color online) (a) The glide-plane symmetry breaking
field. (b) C, symmetry breaking field. Solid dimers denote bonds
where the coupling strength is modified to J'.

C, field preserves the GP symmetry. The pin-wheel VBC
discussed in Ref. 7 would break the GP symmetry but not the
C, symmetry where as the columnar VBC (Ref. 7) would
break both. If we by b,bCZ,Gp denote the ground-state expec-
tation value (S;-S;) for the bond b and its partner under the
symmetry operation bCZ’Gp, we can define the generalized
bond susceptibility as follows:

i |Abc, p(J =J + 8) = Abc p(J' =J ~ &)
Xc,Gp= 515(1) 25 >

(6)
with
Abc,gp=b(J") =bc, cp(J). (7

Clearly, if Ab goes to zero linearly with & the generalized
bond susceptibility is a constant independent of system size
and the associated symmetry is not spontaneously broken.
On the other hand, a bond susceptibility diverging with sys-
tem size signals that the associated symmetry is spontane-
ously broken in the thermodynamic limit.

When performing exact diagonalization studies of small
systems the choice of the finite cluster is crucial since the
smaller clusters will reduce the point group symmetry of the
infinite lattice. For the isotropic kagome lattice, A\p=1, the
plane group is p6mm. This symmetry group implies that for
the isotropic kagome lattice all bonds are equivalent. Our
choice of finite clusters are shown in Fig. 5 for N
=12,24,36. Only the N=36 cluster has the full symmetry
point group symmetry of the kagome lattice. However, for all
clusters do we find that all bonds are equivalent at Ap=1. For
0<Ap<1 only two different types of bonds occur for these
clusters. These are the only clusters we have found with
these properties. For the bond susceptibilities to yield mean-
ingful information about the thermodynamic limit this is
very important since we want to make sure that the presence
of a reduced point group symmetry does not explicitly break
the C, or GP symmetry. This is not the case for the clusters
shown in Fig. 5.

Using the clusters from Fig. 5 we can now study ygp and
Xc, as a function of A, for the different clusters. Our results
are shown in Figs. 6 and 7, respectively. We have used &
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FIG. 5. (Color online) The 12-, 24-, and 36-site lattices.

=0.001 small enough that y, Eq. (6), is almost completely
independent of 8. We begin by discussing ygp shown in Fig.
6. For \p less than roughly ~0.8 do we find that ygp is
almost independent of N. In the inset is shown 1/ygp as a
function of 1/N for N=0.3 indicating a finite value in the
thermodynamic limit. This is consistent with the GP symme-
try not being broken. However, for Ap greater than ~0.8
pronounced size dependence occurs. At Ap=1, 1/xgp as a
function of 1/N is shown in the inset. In this case it seems
reasonable to conclude that ygp diverges with N and hence
that the GP symmetry is spontaneously broken in the ther-
modynamic limit. A natural interpretation of this result is that
a quantum phase transition occurs at ~0.8 between a state
with antiferromagnetic order, which does not break the GP
symmetry, to a new phase where the GP symmetry is broken.

Finally, in Fig. 7 we show our results for Xc,: Again we
see that for A, smaller than roughly ~0.8 there is very little
N dependence. In the inset of Fig. 7 is shown 1/ Xc, as a
function of 1/N at Ap=0.3. Clearly the results extrapolate to
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FIG. 6. (Color online) The glide-plane susceptibility, xgp as a
function of N\p for the different system sizes, N=12,24,36. The
circles represent results for N=36, Ap=0.3. The inset shows XE‘,IP
versus 1/N at A\p=0.3,1.0.
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FIG. 7. (Color online) The C, susceptibility x» as a function of
A\p for the different system sizes, N=12,24,36. The circles repre-
sent results for N=36, N\p=0.3. The inset shows y, versus 1/N at
Ap=0.3,1.0.

a finite value in the thermodynamic limit consistent with the
absence of C, symmetry breaking as would be the case for
an antiferromagnetic phase. As before, we find that for \p
greater than roughly ~0.8 pronounced finite-size effects oc-
cur consistent with a quantum phase transition. However, in
this case, as can be seen in the inset of Fig. 7 at Ap=1, the
susceptibility does not diverge but rather tends to a finite,
possibly very small value in the thermodynamic limit. There-
fore, in the new phase occurring for A greater than 0.8 the
C, symmetry is not broken.

It is important to realize that several finite cluster effects
are present in Figs. 6 and 7. First, the abrupt change in xgp
for N=12 in Fig. 6 is due to a level crossing that does not
occur for N=24,36. The presence of such level crossings for
small clusters is not surprising. Second, even though we be-
lieve that we can reliably detect the divergence of xgp, the
eventual ordering occurring for A, > 0.8 may not be compat-
ible with the N=12,24 clusters. For example, the N=12,24
sized systems do not possess the translational symmetry of
the large unit cell expected for the MZ state of Fig. 8(a). This
could explain the relatively different appearance of the re-
sults for N=24,36 in Fig. 6.

IV. DISCUSSION

Given these results, we may draw several conclusions. At
Ap=0, we have demonstrated that the spin gap vanishes and
that the ground state has a finite staggered magnetization that
is 22% smaller than the square lattice value. We find this
surprising given that each site has either two or three neigh-
bors (with 2.67 neighbors on average) and that this network
is not far from the one-dimensional chain model which is
disordered. It appears that this form of dimensional reduction
does not easily suppress magnetic order.

While we could only study very small system sizes for
Ap >0, finite-size effects seem to be small all the way out to
Ap=0.8. As a result, the antiferromagnetic order is quite
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FIG. 8. (Color online) (a) The Marston and Zeng (MZ) dimer
pattern (Ref. 19) on the kagome lattice and (b) the pin-wheel state
on the distorted kagome lattice (Ref. 7). The MZ pattern arises by
maximizing the number of dimers around each hexagon. Notice
how the dimers on the two highlighted hexagons can be rotated by
180 about the center of the hexagon without needing to alter the rest
of the dimer pattern. This benzenelike resonance suggests that ro-
tational symmetry may be only very weakly broken if this is the
ground state. The pin-wheel pattern, on the other hand, maximizes
dimers around each rhombus and is manifestly C, rotationally sym-
metric about each hexagon.

robust and appears to be the ground state with a large basin
of stability.

The ground state for 0.8<M\p,=1 appears to break the
glide-plane symmetry while remaining invariant under C,
rotations. While larger systems would be required to make
definitive conclusions, this evidence is in stark contrast to the
prediction that the kagome lattice ground state is a spin
liquid.'?2

Remarkably, on this lattice all valence-bond crystals break
the glide-plane symmetry (the most glide-plane symmetric
configuration of Fig. 4(b) still breaks glide-plane symmetry
if the missing dimers are added to the picture). So the break-
ing of glide-plane symmetry strongly supports recent
proposals!3-13 that the ground state may be a VBC. Candi-
date such states include the Marston and Zeng 36-site unit
cell dimer (spin singlet) pattern (MZ)' and the pin-wheel
pattern (in the presence of distortion) (see Fig. 8). One may
argue that the MZ pattern should also break C, rotational
symmetry. However, such a symmetry may naturally be re-
stored by benzenelike resonances on the three dimer hexa-
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gons. One should note that whether the recent ED results'®
are disfavoring the MZ VBC state as well as other proposed
VBC states'3?! or not, is a subject of intense debate.'?

Since any VBC will have a diverging glide-plane suscep-
tibility the results presented here are not very sensitive to
transitions between different VBC’s as long as they conserve
C, symmetry. For example, a transition from the MZ pattern
at Ap=1 to the pin-wheel pattern at A, <1 is certainly pos-
sible. For 0.8 <\, we can therefore not exclude the presence
of several different C, symmetric VBC phases although the
rate of divergence of ygp could potentially be quite different
for different phases. In fact, one might speculate that the
cusp in xgp for N=36 and in x., for N=24,36 in both cases
at A;,=0.98 is a signature of a phase transition between dif-
ferent valence-bond crystals.

A phase transition near A,~=~0.8 was also found in the
large-N study of Ref. 7. Thus both large-N and exact diago-
nalization methods predict the existence of a quantum phase
transition at a value of A\, away from the ideal kagome limit.
If we assume that the spin gap is nonzero at A\p=1 and van-
ish approximately linearly with the deviation of \p from 1,
then this value for the quantum critical point is also roughly
consistent with the vanishing of the spin gap (which, from
exact diagonalizations, is estimated to be rather small but
finite?®?? in the thermodynamic limit and has a value of
0.18487 at Ap=1 for the 36-site cluster). Given the apparent
glide-plane symmetry breaking for A, =0.8, this phase tran-
sition then appears to be between two phases with unrelated
orders. It may therefore fall into the deconfined universality
class!” if it is not a first-order transition.
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